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Abstract— Of the satellite radiometer sensors, there has been
only one instrument that provides any heritage at L-band:
the Skylab S-194 instrument that operated in the 1970s. From
an analysis of S-194 brightness temperature (Tb) sensitivity to
SSS, SST and wind speed, [1] concluded that the wind speed
dependence of L-band brightness temperature at nadir is about
0.16 K/knot. This is almost four times higher than what is
predicted by recently developed sea surface emissivity models
at L-band and twice the experimental value reported during the
Bering Sea Experiments [2].

To investigate the possible reasons for such discrepancies, two
data sets acquired by the S-194 Skylab instrument from 1973-
1974 missions are used in the present paper in conjunction with
products from climate model reanalysis projects as ancillary data.
The re-analyses shows that it is very likely that [1] overpredicted
the quasi-linear wind speed dependence of L-band sea surface
emissivity at nadir by a factor of about 2. Main discrepancies
being due to different wind speed data used in the analysis.
Still, we found that emissivity models for the foam free sea
surface based on the small perturbation method underestimate
the roughness impact at nadir by a factor of 2. Including the
foam impact cannot explain all the differences.

I. INTRODUCTION

Space-borne sea surface salinity (SSS) observations are
considered as a promising technique for future oceanographic
satellite missions. New developments in L-band radiometry
will provide the key technology to obtain salinity estimates
with sufficient accuracy. The ESA SMOS mission, currently
under preparation, and the proposed US/Argentinean Aquarius
mission will facilitate the first space-borne salinity measure-
ments from 2007 onwards.

The current empirical understanding of the sea surface
emissivity at 1.4 GHz mainly relies on a few experiments
conducted in the 1970s ( [1], [3], [4], [2]) and from recent
field studies performed in the context of the future SMOS (
[5], [6], [7]) and AQUARIUS ( [8]) missions.

Data acquired during these experiments from either towers,
aircraft and satellite sensors have all demonstrated that the sea
surface emissivity at L-band being dependent on salinity is also
function of the ocean surface roughness. Recently conducted

experiments provided estimates of the wind speed sensitivity
of L-band sea surface emissivity only for incidence angles
larger than 25◦. As SMOS will provide multi-angle brightness
temperature, it is important to validate roughness corrections
for low incidences around nadir as well.

Of the past measurements, there have been only two cam-
paigns that provide near nadir data at L-band: the data from
the Skylab spaceborne S-194 radiometer [1] and the Bering
sea Experiment aircraft data [2]. From an analysis of S-194
brightness temperature (Tb) sensitivity to SSS, SST and wind
speed, [1] concluded that the wind speed dependence of L-
band brightness temperature at nadir is about 0.16 K/knot.
This is almost four times higher than what is predicted by
recently developed sea surface emissivity models at L-band
(two-scale [7], and Small Slope Approximation [9]) and twice
the experimental value reported by [2] (0.154 K/ [m.s−1]).

To investigate the possible reasons for such discrepancies,
two data sets acquired by the S-194 Skylab instrument from
1973-1974 missions are used in the present paper for re-
analysis: (i) the first includes parts of the data set from [10],
recently reanayzed by [11] for Soil Moisture purposes, for
which several tracks were available over the ocean, but no
coincident ground truth is available; (ii) the second set of data
is extracted from the NRL report of [1]. In this analysis, Lerner
and Hollinger used an approximate model for the sea water
dielectric constant [12] and crude auxiliary data. Using a more
accurate dielectric constant model at L-band [13] and products
from global model reanalysis (ERA40, WOA01) as auxillary
data, we investigated why the up-to-date emissivity models do
not fit the only satellite observations available for validation. In
this context, we applied atmospheric and galactic corrections
to both Skylab antenna temperature data sets and removed
the estimated flat sea surface contribution to estimated surface
brightness temperatures. Residuals analysis of the emissivity
indicates a sensitivity with wind speed much closer to the
Bering sea measurements [2]. Still, the Small Slope Approxi-
mation emissivity theory is found to underestimate roughness
impact at L-band and nadir.
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II. SKYLAB DATA SET RE-ANALYSIS

A. SkyLab data sets

Skylab was launched on May 14th, 1973 in a near-circular
Earth orbit. Orbital inclination was 50◦ and the nominal
altitude was 435 km. The S-194 microwave sensor was a nadir
viewing L-band H polarization radiometer. It utilized a fixed
planar array antenna oriented toward nadir, recording thermal
radiation at a frequency of 1.4 GHz (21-cm wavelength) and
measuring the absolute antenna temperature. The sensor used
a calibration scheme referenced to fixed hot and cold load
input. [1] analyzed several aspects of the data quality of the
S-194 sensor, which included an evaluation of the absolute
accuracy and stability. Over the course of the entire series
of data collection passes (7 through 98) they found that the
standard error was approximately 1.3 K with close to zero bias.
Half-power beam width of the sensor was 15◦, which provided
a swath width or resolution footprint of approximately 110
km at an orbital altitude of 435 km. Data were recorded
approximately three times per second, which resulted in a
distance between centers of two consecutive resolution cells
on the ground of 2.5 km.

There were several Earth remote sensing experiments con-
ducted using the S-194 instrument. These included coverage
of specific targets and also larger regions that were not the
focus of the specific experiment.

[1] state that they had data from 27 passes for their ocean
studies. A compendium of all the S-194 measurements ana-
lyzed by [1] including collected ground truth data (sea surface
temperature (SST), sea surface salinity (SSS), wind speed and
sun elevation angle) is available in [1]. The measured antenna
temperatures were averaged for a period of several minutes
and re-calibrated. Note also that the corresponding estimated
ground truth SSS, SST and wind speed data in [1] were given
to the neareast 0.5 psu, 1 ◦C and 1 m/s, respectively.

Other sets of Skylab S-194 data were recently recovered
and reprocessed by [11] to conduct soil moisture analysis (data
available on the web). The only data they were able to obtain
were those used by [10] corresponding to several days in 1973
and 1974. Portions of several tracks from these data extend
over the ocean and are used here for re-analysis. Unlike the
analyzed data in [1], the antenna temperature provided by [11]
are not averaged but given at about 0.3 Hz, not re-calibrated
and as well, no ground truth data are given over the ocean.
Figure 1 summarizes the tracks of the S-194 oceanic data
available combining these two sources.

B. Re-analysis

The sea surface brightness temperatures observed by a
radiometer at frequency f , looking at nadir can be expressed
as follows:

TB = Ts · εs = Ts

([
1 − |R(0)|2

]
+ ∆e

)
(1)

where Ts is the SST, εs is the sea surface emissivity, R(0)

is the Fresnel reflection coefficient at nadir, and the ∆e term
is the emissivity changes due to the rough sea surface.
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Fig. 1. Locations of available S-194 satellite observations over the ocean.
Observations shown are further than 120 km from land. Also, for these
observations, sun angles are less than 70o

In the following analysis we compare the S-194 satellite-
derived emissivity εs with emissivity computed assuming a
flat sea surface using the Klein and Swift dielectric constant
model [13] applied to SSS and SST data extracted from World
Ocean Atlas 2001 (WOA) monthly SSS climatology at 1◦×
1◦ resolution and ECMWF ERA-40 reanalysis on a 2.5x2.5o

grid, respectively. For each satellite measurement we bilinearly
interpolate the SSS field nearest in time to the observation
point, and we use the same method for SST and 10 m wind.

To derive the sea surface emissivity from the satellite
measurements, we must correct the antenna temperatures for
atmospheric emission, attenuation, cosmic and galactic radia-
tion, and sun glint. For this analysis we only consider data for
which the sun elevation angle is less than 70o and we make
no sun glint correction to the remaining data. In this case, we
can write the antenna temperature TA as

TA = (1 − A)εsTs + Tu + (1 − A)(1 − εs) [Td + Tgal + Tcos] ,   (2)

where, A is the total atmospheric attenuation from the surface
to the satellite, εs is the sea surface emissivity, T is the SST
and Td, Tgal, Tcos Tgal are brightness temperatures corre-
sponding to, respectively, downwelling atmospheric radiation,
downwelling galactic radiation, and downwelling cosmic back-
ground radiation.

We compute atmospheric attentuation and emission using
the Millimeter-wave Propagation Model MPM described in
[14]. We consider absorption due to water vapor and molecular
oxygen, which are the major contributors to atmospheric
absorption and emission at L-band. Although cloud liquid
water and ice contribute to atmospheric absorption, their
contributions are small relative to those of oxygen and water
vapor [15].

For water vapor, temperature and pressure as a function of
height, we use ECMWF ERA-40 reanalysis on a 2.5x2.5o grid,
which provides data up to about 50 km. For each satellite
observation, we use the reanalysis grid nearest in time and
then interpolate pressure, temperature and relative humidity
in space to the satellite subpoint. We then discretize the
atmosphere along the nadir path between the satellite and the



surface into 50 m grid intervals from the surface to 50 km. We
then fit natural splines to the model data and compute, at each
level, atmospheric absorption coefficients for water vapor and
oxygen. If we let α(z) represent the total absorption coefficient
in nepers, then the optical path τ between heights z0 and z1

is

τ(z0, z1) =
∫ z1

z0

α(z)dz, (3)

and the total atmospheric attenuation from z0 to z1 is then

A(z0, z1) = e−τ(z0,z1) (4)

The downward atmospheric emission at the sea surface is

Td =
∫ zt

zs

α(z)Ta(z)A(zs, z)dz (5)

and the atmospheric emission at the top of the atmosphere is

Tu =
∫ zt

zs

α(z)Ta(z)A(z, zt)dz, (6)

In the above expressions for Td and Tu, Ta(z) is the atmo-
spheric temperature at height z, zs is the sea surface height,
and zt is the top of the atmosphere which is taken to be 50
km.

The cosmic background brightness temperature Tcos is
assume to be 2.7 K and is independent of incidence angle.

For the galactic background brightness temperature Tgal we
use the data from [16] and presented in [17]. For simplicity
we only consider the contribution from the nadir direction.
Using equations presented in [17] we transform each satellite
observation location onto the celestial sphere, obtain the galac-
tic brightness contribution, and then attenuate the resulting
brightness temperature by the atmosphere to obtain the galactic
contribution to Tb incident at the earth’s surface.

III. RESULTS

Antenna temperatures for all satellite observations are
shown in Figure 2. We only considered observations at dis-
tances from coast exceeding than 120 km to avoid side-
lobe contamination by land. In accordance with [1] and [10],
we found atmospheric transmittance and upward atmospheric
brightness temperatures of order 0.99 and 2 K, respectively.
As illustrated in Figure 3, the total atmospheric and galactic
corrections are almost uniform over the complete data set and
of order 7-8 K.

Figure 4 shows the difference ∆e as function of wind speed
between emissivity inferred from S-194 antenna temperatures
(corrected for atmospheric, cosmic, and galactic contributions)
and emissivity computed by assuming a flat sea surface using
the dielectric model of [13] for sea water. Note that in
producing this figure, we remove the mean ∆e for each pass
of the Eagleman and Lin [10] data and for all the Lerner and
Hollinger data. This was done to remove clear biases in certain
passes (particularly during the month of june) possibly due to
calibration issues. The linear best fit through the wind speed-
binned averaged data is shown in Figure 4 and exhibits a slope
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Fig. 2. Antenna temperatures for all satellite observations. These data are
not filtered by distance from land and sun angle.
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Fig. 3. Scatterplot of corrected and uncorrected brightness temperatures ver-
sus uncorrected brightness temperature. Squares show uncorrected brightness
temperature; crosses show brightness temperatures corrected for atmospheric
attenuation and emission; stars show brightness temperatures corrected for
both atmospheric atrneuation/emission, cosmic, and galactic radiation at L-
band.
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and emissivities computed by assuming a flat sea surface using the dielectric
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of 6.2·10−4 per m.s−1 which corresponds approximately to an
icrease in brightness temperature of about 0.17 K per m.s−1

at an SST of 15◦C. Assuming an SST of 0◦C, the Bering sea
measurements [2] indicates a sensitivity with wind speed of
5.7 ·10−4 per m.s−1, which is very close from Skylab data
deduced sensitivity.

In comparison, we plot as well the results predicted by the
Small Slope Approximation (SSA) theory as applied in [9],
which exhibits a linear slope of around 3.5 ·10−4 per m.s−1.
Despite the large scatter in the Skylab data, it is clear that SSA
model underpredicts the observed wind sensitivity at L-band
and nadir.

IV. DISCUSSION AND CONCLUSIONS

In preparing for future L-band passive microwave sea sur-
face salinity satellite missions, investigators have employed
ground, aircraft and satellite sensors. Of the satellite sensors,
there has been only one instrument that provides any heritage
at L-band: the Skylab S-194 instrument that operated in the
1970s. Here several dataset from the S-194 missions have been
re-analysed expecting that the effort will expand our knowl-
edge of the L-band brightness temperature over the ocean. In
this investigation we explored the use of products from climate
model reanalysis projects as ancillary or alternative validation
data.

Despite a large scatter in the data, which might be due to
several reasons (calibration issues, bad quality ancillary data,
etc...) the re-analyses showed that it is very likely that [1]
overpredicted the quasi-linear wind speed dependence of L-
band sea surface emissivity at nadir by a factor of about 2.
The results from our reanalysis is consistent with previous
aircraft measurements by [2]. As revealed by Figure 5, which
shows the linear fits of the wind excess emissivity ∆e for four
combinations of auxiliary data, the wind speed data used by
Lerner and Hollinger in their analysis are mostly responsible
for the different sensitivity observed. Still, we found that
emissivity models for the foam free sea surface based on the
small perturbation method underestimate the roughness impact
at nadir. According to [2], a 0.07K/% of whitecap coverage
should be expected at nadir. This translates into an increase
of the total wind excess emissivity slope of about 4.3 ·10−4

per m.s−1, still underestimating the observations.
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